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Abstract. We derive an expression for the contribution to the resistivity from the carrier–carrier
scattering between two subbands with different masses in a single quantum well. The effects
of the true wave functions of the carriers in the direction normal to the quantum well are taken
into account. The calculations are done within the generalized Drude approach and with the
RPA screening matrix. Numerical results for general temperatures are presented for a p-type
centre-doped GaAs quantum well and compared with experiments.

1. Introduction

Recently the current drag between the carriers in two closely spaced quantum wells was
demonstrated experimentally [1]. A current produced in one of the wells has the effect that
the drifting carriers drag the carriers in the neighbouring well along. This drag occurs even
if the carriers in the two wells have the same mass and charge. This type of drag effect had
been predicted much earlier [2, 3], but the experimental verification inspired a fair amount
of new both experimental [4] and theoretical work [5].

Related drag effects are well known in other experimental situations: phonons can be
dragged along with drifting carriers: the minority carriers in a doped semiconductor can be
dragged along with the drifting majority carriers with the striking result that the minority
contribution to the conductivity is negative [6, 7]; drag effects modify the resistivities in
heavily doped many-valley semiconductors [8].

In bulk material the carrier scattering has no direct contribution to the resistivity if all
the carriers have the same mass-to-charge ratios. It has an indirect effect, though. It changes
the distribution of the electrons and makes it closer to a thermal distribution in the centre-
of-mass system [9]. This affects the carrier–impurity scattering and hence the resistivity.
If the mass-to-charge ratio is different or, as in the pair of quantum wells, the carriers are
separated in space, there is a direct contribution to the resistivity from the carrier–carrier
scattering. In the present work we study a p-type doped GaAs quantum well with more
than one quantized level occupied. The two lowest levels are formed from the two different
hole bands. Thus, the masses of the two groups of carriers are different. Consequently this
leads to a current drag effect for finite temperatures. Usually this carrier–carrier scattering
is neglected in the theoretical treatment of the transport in a quantum well but we find that
this contribution can be substantial.

In the first section we briefly discuss the system studied and outline how to find the
energies and wave functions of the carriers in the different subbands. The rather subtle
subject of the dynamical screening by all bands, taking the quasi-2D nature of the carriers
into account, is discussed in more detail in the next section. We start then with the general
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case ofN subbands contributing to the screening, and continue with a derivation of the
explicit expressions for the special case of only two occupied subbands. The next section
deals with the resistivity parallel to the doped plane. In order to calculate the contribution
to the resistivity from the carrier–carrier scattering between two different subbands we first
perform a very general derivation of the conductivity for a quasi-2D subband system for an
unlimited number of bands, but without any scattering between the bands. This result has its
own worth and serves as a starting point for further improvements, such as the subsequent
examination of the effects of the carrier–carrier scattering, which is the main purpose of this
study. Our results are presented and discussed and we compare the numerical calculations
with experiment. Finally in the last section we summarize and draw conclusions.

2. The system studied and the carrier states

The resistivity derivations presented in this article are intended to be very general, but the
numerical calculations are done for a 150Å thick GaAs p-type quantum well where a 30Å
thick region in the middle of the well is doped. The well barriers are assumed to be high
enough to be treated as infinite. The quantum well has the effect that the energy separation
between the subbands is increased compared to aδ-doped layer in a bulk material. This
means that fewer bands are populated. The effective masses of the heavy and light holes
are 0.34me and 0.094me, respectively, and the background screeningK is set to 13.0. The
system parameters are chosen in order to imitate the experimental set-up in [10], and at the
end we compare our numerical results with the experimental data.

The carrier eigenstates are found by self-consistently solving the coupled Schrödinger
and Poisson equations [11] in the direction normal to the quantum well. The exchange–
correlation energy and the band non-parabolicity are ignored in the present calculations. The
self-energy shifts due to exchange and correlation are not very important for the majority
carrier bands [12] (the hole bands in the present case). The effects basically compensate
by an inflow of carriers from outside the well leading to a Hartree contribution that to a
large extent compensates the exchange–correlation potential. The minority carrier band on
the other hand is affected more and there is a band-gap renormalization that affects optical
experiments studying across-band-gap processes.

In figure 1 we present the self-consistent solutions for the centre-doped quantum well
for three different doping concentrations at the temperatureT = 80 K. Two heavy-hole and
two light-hole subbands are included in the calculations. The energy scale is fixed by the
potential which is set to zero at the edge of the well.

3. The screening

In a strict 2D model the unscreened carrier–carrier interaction,ν(q), between two carriers
can regardless of participating subbands be considered as a simple Coulomb interaction
between two point charges, i.e.ν(q) = νq/K, whereνq = 2πe2/q is the Fourier transform
of the Coulomb interaction in 2D andK is the background screening. When the true
wave functions of the carriers in the direction normal to the doped plane are taken into
consideration one has to pay attention to which two subbands are actually involved in the
process since each type of particle pair has different overlaps. The unscreened interaction
between a carrier in subbandi and another one in subbandj has to be modified according
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Figure 1. The self-consistent solutions at 80 K with four subbands for the doping concentrations
1017 cm−3 (a), 1019 cm−3 (b) and 1019 cm−3 (c). The dashed vertical lines indicate the quantum
well, and the dotted vertical lines show the doped region in the middle of the well. The thick
curve is the self-consistent Hartree potential. The thin curves represent the probability densities
of the quantized levels. Each curve is shifted with the corresponding energy-level position. The
carrier states are, from the top, heavy hole 1, light hole 1, heavy hole 2 and light hole 2. Note
that the Fermi level, indicated with the dashed horizontal line, is below the light-hole-1 level
for the highest carrier concentration, which explains the somewhat deviating results for that
concentration.

to

νij (q) = ν2D
q

K
∫ ∫ ∞

−∞
dz dz′ϕ†

i (z)ϕi(z) e−q|z−z′| ϕ†
j (z′)ϕj (z

′) (1)

whereϕi(z) is the wave function, discussed in the previous section, of the carriers in subband
i in the direction normal to the quantum well. In our case the integrals are limited to the
width of the quantum well. This bare carrier–carrier interaction is dynamically screened
by all bands, which in the RPA implies that we sum over all so called bubble diagrams,
or Coulomb self-energy insertions. In the strict 2D case withN subbands we have the
screened interaction, indicated with a tilde, as

ν̃(q, ω) = ν(q)

/(
1 −

N∑
j=1

gjν(q)χ0
j (q, ω)

)
. (2)

The quantitygj is the degeneration of bandj and the susceptibilityχ0
j is given in the

retarded form by

χ0
j (q, ω) = 2

h̄

∫
d2k

(2π)2

[
n

j

F (k) − n
j

F (k + q)

ω − (h̄/2mj)[(k + q)2 − k2] + iδ

]
(3)

where nF is the Fermi occupation function. The dielectric functionε(q, ω) can easily
be found as the denominator of (2). We have neglected intersubband transitions and only
included intrasubband transitions. We will stick to this approximation throughout. Interband
transitions cannot be accommodated within the generalized Drude approach [13].

The quasi-2D case is more complicated since the interaction is dependent on which
bands are participating. We getN sets ofN coupled equations:

ν̃ij (q, ω) = νij (q) +
N∑

k=1

gkνik(q)χ0
k (q, ω)ν̃kj (q, ω) (4)
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for i, j ∈ [1, N ]. Let us look at a specificj value. Then we have theN coupled equations{
ν̃1j = ν1j + (

g1ν11χ1
)
ν̃1j + . . . + (

gNν1NχN

)
ν̃Nj

ν̃Nj = νNj + (
g1νN1χ1

)
ν̃1j + . . . + (

gNνNNχN

)
ν̃Nj

(5)

which in matrix formulation can be written asAν̃j = νj , where

A =
 (1 + c11) c12 . . . c1N

...

cN1 cN2 . . . (1 + cNN)

 (6)

andcik = −gkνikχk. This is furthermore true for allj , which implies that we can reformulate
the problem to a single matrix equation,Aν̃ = ν, where ν is a matrix containing all
unscreenedi–j interactions and̃ν is the corresponding screened results, which are what we
are searching for. The solution is of course given byν̃ = A−1ν. We have thus shown that
it is possible to derive all dynamically screened carrier–carrier interactions,ν̃ij (q, ω), from
all the unscreened results found from equation (1) by calculating and inverting the single
matrix A, as defined in equation (6).

The scattering impurities are still assumed to be in aδ-layer. The unscreened interaction
u(q) between a carrier in subbandi and the impurities has to be modified in the same manner
as the carrier–carrier interaction if the true wave functions of the carriers in the direction
normal to the doped plane are taken into account. The modified unscreened interaction
becomes

ui(q) = ν2D
q

K
∫ ∞

−∞
dzϕ

†
i (z) e−q|z| ϕi(z) (7)

where the integral again is limited to the quantum well in the current calculations. This
time we only haveoneset of coupled equations, namely

ũi(q, ω) = ui(q) +
N∑

k=1

gkνik(q)χ0
k (q, ω)ũk(q, ω) (8)

wherei ∈ [1, N ]. An examination of (8) shows that we have the same relationship between
the screened and the unscreened terms as in the carrier–carrier interaction, i.e. again we
need to invert the matrixA given in (6) to get the dynamically screened carrier–impurity
interactionũ(q, ω).

Often the conductivity is dominated by the lowest subbands, especially in the low-
temperature region. This is especially true when studying a quasi-2D system in a quantum
well where the energy separation between the subbands becomes large. Therefore it is useful
to derive the explicit expressions for the case of only two subbands. The carrier–carrier
interaction and the carrier–impurity interaction are then found from the inverse of the(2×2)

matrix

A =
[

(1 − ν11χ1) −ν12χ2

−ν21χ1 (1 − ν22χ2)

]
(9)

which can easily be done analytically. The screened interaction within and between the two
bands becomes{

ν̃ii = [(
1 − νjjχj

)
νii + νij νijχj

]/[(
1 − νiiχi

)(
1 − νjjχj

) − νij νijχiχj

]
ν̃ij = νij

/[(
1 − νiiχi

)(
1 − νjjχj

) − νij νijχiχj

] (10)

where i = 1, 2 and j 6= i. The screened carrier–impurity interaction with the same
restrictions oni andj is

ũi = [(
1 − νjjχj

)
ui + νijχjuj

]/[(
1 − νiiχi

)(
1 − νjjχj

) − νij νijχiχj

]
. (11)
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That the relative complexity of these terms is due to the quasi-2D nature of the carriers can
be confirmed by replacing the modified bare interactions in the equations (10) and (11) with
νq/K which reduces the screened interactions to the strict 2D formula (2), as expected.

4. The resistivity calculations

First we derive an expression for the DC resistivity of a many-band quasi-2D system without
any scattering between the subbands. The result is based on the generalized Drude approach
(GDA) [13] and is valid for general temperatures and unlimited number of subbands.
Secondly the effects of the scattering between two subbands are studied and an expression
for the current drag effect is obtained. The true wave functions of carriers in the direction
normal to the quantum well enters the resistivity calculation both through the modified bare
interactions and through the RPA screening, which were both discussed in the previous
section. Here we are not concerned about the explicit form of the interactions, just noting
that ν̃ij (q, ω) stands for the screened interaction between a carrier in subbandi and a carrier
in subbandj , and thatũi(q) denotes the screened interaction between a carrier in subband
i and an impurity.

For high frequencies it is possible to derive very rigorous results for the resistivity based
on the Kubo formalism [14]. The basic idea in the GDA is to expand the simple Drude
expression

σD(ω) = (
ne2/m

)
/(1/τ − iω) (12)

for high frequencies and compare it with the rigorous Kubo expression. An expression for
the inverse relaxation time 1/τ , which is generalized to become frequency dependent, can
be identified and put back into the original equation (12) for the dynamical conductivity.
Finally it is assumed that the new expressionσGDA(ω) is valid for all frequencies, especially
the zero limit. The validity of this approach was studied earlier [15]. The GDA is related
to memory function approaches to the conductivity [16].

To obtain the Kubo expression for the conductivity we follow the outline in [14],
adjusting the derivation to the case of a many-band quasi-2D system [17]. We find

σKubo(ω) = i
∑

i

e2nigi

ωmi

+ i
5(ω)

ω
(13)

where the sum is over allN included subbands,ni is the carrier concentration in subband
i, and the current–current correlation function5(ω) is given by

5(ω) =
∑

i

gi

nimpe2

4πm2
i ω

2

∫
dq S(q)q3ũ2

i (q)
[
χ0

i (q, 0) − χ0
i (q, ω)

]
+

∑
ij

gigj

nimpe2

4πmimjω2

×
∫

dq S(q)q3ũi(q)ũj (q)ν̃ij (q, ω)
[
χ0

i (q, 0) − χ0
i (q, ω)

]
×

[
χ0

j (q, 0) − χ0
j (q, ω)

]
. (14)

Hereũi(q) andν̃ij (q) are again the screened carrier–impurity and carrier–carrier interactions,
respectively,gj is the degeneracy,mi is the effective mass of each subband, andnimp is the
total number of scattering centres, usually taken as the dopant concentration. The structure
factor S(q), which is a result of an assemble averaging of the impurity positions, is equal
to one for randomly distributed impurities and will from now on be dropped.
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The expression (13) should be compared with the high-frequency expansion of the Drude
expression for many subbands, without any scattering between the groups of carriers,

σ
high

D =
∑

i

nigie
2

miω2

[
1

τi

+ iω

]
(15)

and the inverse relaxation time for bandi can be identified as

1

τi

(ω) = i
nimp

4πnimiω

∫
dq q3ũ2

i (q)
(
χ0

i (q, ω) − χ0
i (q, 0)

)
+ i

∑
j

gj

nimp

4πnimjω

×
∫

dq q3ũi(q)ũj (q)ν̃ij (q, ω)
[
χ0

i (q, 0) − χ0
i (q, ω)

]
×

[
χ0

j (q, 0) − χ0
j (q, ω)

]
. (16)

The above expression should be inserted back into the original Drude expression (15) and
after taking the DC limit we are left with

σGDA(0) =
∑

j

gj

(
4πn2

j e2/nimp

)/(∫
dq q3

{
− ∂

∂ω
= χ0

j (q, ω)

}
ω=0

ũ2
j (q)

)
(17)

since the second term in (16) vanishes in the zero-frequency limit. Finally, the total
resistivity %(0) is found from the inverse of the conductivity (17) and the first part of
our derivation is done.

To obtain the effect of the current drag from the scattering between the bands, with
the present limitation of including only two subbands in the calculations, we generalize the
results of [8] for arbitrary concentrations to obtain the dynamical Drude conductivity with
scattering between two bands as

σD(ω) =
n1e

2

m1

[
1
τ2

− iω

]
+ n2e

2

m2

[
1
τ1

− iω

]
+ (n1+n2)

2e2

[n1m1+n2m2]
1

τ12[
1
τ1

− iω

][
1
τ2

− iω

]
+ m1m2

[n1m1+n2m2]
1

τ12

{
n2
m1

1
τ2

+ n1
m2

1
τ1

}
− iω 1

τ12

(18)

whereτ12 is the scattering time between the two groups of carriers. The high-frequency
expansion of the Drude conductivity becomes

σ
high

D ≈ n1e
2

m1ω2

{
1

τ1
+ iω

}
+ n2e

2

m2ω2

{
1

τ2
+ iω

}
+ n1m1n2m2

(n1m1 + n2m2)

(
1

m1
− 1

m2

)2
e2

ω2

1

τ12
(19)

where the first two terms are the contributions from the impurity scattering and the third
term is the contribution from the carrier–carrier scattering.

The impurity-scattering terms should again be compared with the Kubo expressions
for impurity scattering and the inverse relaxation times are given by (16), but the third
term from the carrier–carrier scattering must be compared with the Kubo expression for a
multi-component plasma. With suitable modifications in the derivation of the first integral
of (2.30) in [14], taking the quasi-2D nature of the system into account [17], one gets with
our notations in the zero-frequency limit

n1m1n2m2

(n1m1 + n2m2)

(
1

m1
− 1

m1

)2
e2

ω2

1

τ12
= 4e2h̄

ω3

[
1

m1
− 1

m2

]2 ∫
d2q

(2π)2
q2

µ

∫ ∞

0

× dω′

(2π)

βh̄ω/2

sinh2(βh̄ω′/2)

∣∣ν̃12
(
ω′) =[

χ1
(
ω′)] =[

χ2
(
ω′)] (20)
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whereβ = 1/kBT andqµ is the projection of the wave vector on the applied electric field
E. The DC relaxation time for the carrier–carrier scattering is identified as

1

τ12
(0) = 2βh̄2 (n1m1 + n2m2)

n1m1n2m2

∫
d2q

(2π)2
q2

µ

×
∫ ∞

0

dω

(2π)

|ν̃12(q, ω)|2 =[χ1(q, ω)] =[χ2(q, ω)]

sinh2(βh̄ω/2)
. (21)

The final step is to insert the above-derived relaxation time into the low-frequency limit
of the Drude expression (18). Thus the inverse relaxation time (21) should be inserted into

σGDA(0) = n1e
2

m1
τ1 + n2e

2

m2
τ2 − n1n2e

2

[
1

m1
τ1 − 1

m2
τ2

]2/({
n2

m1
τ1 + n1

m2
τ2

}
+τ12

{
n2

m1
+ n1

m2

})
(22)

which with obvious notation can be rewritten as

σGDA(0) = σ1 + σ2 −
[
n2σ1 − n1σ2

]2({
n2

2σ1 + n2
1σ2

}
+ n1n2e2τ12

{(
n1m1 + n2m2

)/
m1m2

}) (23)

whereσi , i = 1, 2, are explicitly given by (17). The two limits of vanishing and strong
carrier–carrier interactions are σGDA(0) → σ1 + σ2 τ12 → ∞

σGDA(0) → (
n1 + n2

)2/(
n2

1/σ1 + n2
2/σ2

)
τ12 → 0.

(24)

Finally, the last term in the denominator of (23) is after the angular integration given by:

n1n2e
2τ12

{
n1m1 + n2m2

m1m2

}
= (

n1n22πe2/βh̄2
)/(∫

dqq3
∫ ∞

0

× dω

(2π)

|ν̃12(q, ω)|2 =[χ1(q, ω)] =[χ1(q, ω)]

sinh2(βh̄ω/2)

)
. (25)

5. Results

We have performed several calculations for the ideal system described in section 2, similar
to the experimental one [10], in order to study our theoretical results. We have used the 3D
acceptor concentrations 1017, 1018 and 1019 cm−3, assuming that each acceptor contributes
with exactly one carrier, and varied the temperature between 4 and 300 K. The corresponding
2D concentrations are found from the 3D ones through multiplication by the width of the
doped region. In a real experiment only a small fraction of the acceptors are ionized at
low temperatures. We have also performed calculations for the more realistic system with
additional scattering centres, simulating unintentional doping, and included the scattering
against non-ionized impurities, and compared our numerical results with the experimental
data.

In figure 2 we compare the quasi-2D resistivity with the strict 2D results for three
different concentrations. We also distinguish between the case when only the two lowest
subbands are included in the calculations, and the case when also the next pair of subbands
contributes to the resistivity. For the highly doped system the conductivity contribution
from the second pair of occupied hole states dominates in the high-temperature region,
which explains the anomalous behaviour of these curves.
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Figure 2. The total resistivity without any scattering between the bands. The solid curves are
the full results with four subbands included in the calculations while the dotted–dashed curves
are the corresponding results with only two subbands. The dashed and the dotted curves are the
strict 2D results for four and two bands, respectively.

Figure 3. The effects of the current drag on the total resistivity. The solid curves are our
full results with scattering between the bands. The dashed curves are our earlier results for the
quasi-2D system with two subbands but without any scattering between the subbands, and the
dotted curves are the corresponding results in the limit of very strong scattering between the
bands; this demonstrates the result with maximum possible drag effect.

The calculations with the full carrier–carrier interaction included are presented in
figure 3, where also the two limits from equation (24) with vanishing and very strong
interaction are shown. From equation (22) we note that the carrier–carrier contribution
always increases the resistivity, but the maximum effect of the current drag is always
limited by (24).

Finally, in figure 4 we compare our numerical results with experimental data [10],
where the given doping levels are 3× 1011 cm−2 (1× 1018 cm−3) in (a) and 9× 109 cm−2



Current drag in a single quantum well 3713

Figure 4. A comparison with experiment. The open squares are our results with two subbands
included in the calculations. The filled triangles are the experimental data. The open circles are
the calculated resistivities in the presence ofN = 5 × 1015 cm−3 additional scattering centres,
simulating unintentional doping.

(3 × 1016 cm−3) in (b). The experimental values of the resistivity are illustrated with
filled triangles while our calculations for two subbands with carrier–carrier scattering are
presented as open squares. We have at each point used the measured carrier concentration
since it varies considerably with the temperature. In order to imitate a true sample and
to illustrate the effects of unintentional doping we have also calculated the resistivity with
5 × 1015 cm−3 additional ionized impurities in the quantum well, not contributing to the
carrier concentration but interacting with the carriers and thus increasing the resistivity. The
last results are given by the open circles and they are in satisfactory agreement with the
experiments. The interaction with the non-ionized impurities can be neglected [17].

The calculations were performed ignoring the phonons, which explains the deviations
from the experimental values in the high-temperature limit. Unfortunately, this is also the
region where the current drag is most noticeable. One should extend the theory to include
the phonons to be able to confirm the effect of the current drag in the studied system. There
are also several other unknown factors which could account for the divergence with the
experiments, such as the uncertainty in the true width of the doped layer and scattering
against edge defects of the quantum well. We have also omitted multiple scattering, which
ought to affect the transport properties in the low-doping limit.

6. Summary and conclusions

We have derived a general expression for the resistivity of a many-subband quasi-2D system
which takes the true wave functions of the carriers in the direction normal to the doped
plane into account. The derivation is based on the generalized Drude approach with the
temperature dependent RPA screening matrix. Transport properties of multisubband systems
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have been studied earlier at zero temperature [18] but to our knowledge this is the first time
an expression valid for all temperatures and an unlimited number of subbands is obtained.

We have also derived the effects of the carrier–carrier scattering, or current drag, between
two subbands with different masses, also within the generalized Drude approach with the
temperature dependent RPA screening matrix and with the true wave functions of the carriers
in the direction normal to the doped plane. We have found that the resistivity is increased by
a temperature dependent factor which we have calculated for a p-type centre-doped GaAs
quantum well. The current drag effect is found to be negligible for low temperatures but
substantial for temperatures close to room temperature.
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